Commodity Mercantile Exchange: O juiz John Robert Blakey em Chicago demitiu um processo acusando o CME de favorecer os HFTs, dando-lhes acesso aos dados do mercado antes de outros investidores.
EUA para processar o comerciante de alta velocidade no primeiro julgamento criminal por engano.
Pela Reuters | 26 de outubro de 2015.
O governo dos EUA vai se afastar em um tribunal de Chicago na segunda-feira contra um comerciante de alta freqüência acusado de usar algoritmos de computador para mover os preços do mercado, enquanto os procuradores testam sua capacidade de impor uma nova lei "anti-spoofing".
A NYSE explica a suspensão da negociação.
Um resumo das últimas novidades da troca e da indústria.
O CFTC está considerando endurecer as regras aplicadas aos comerciantes automatizados.
O setor de câmbio baixou 60 bps esta semana, superando as ações globais em 30 bps. O CFTC está considerando endurecer as regras aplicadas aos comerciantes automatizados e mais notícias de intercâmbio.
Zona do euro com problemas, Fed em espera.
& quot; Flash crash Mary & quot; pode atender a fiança.
Navinder Sarao, o comerciante britânico acusado de ajudar a provocar o "choque instantâneo" de Wall Street em 2010, deve aparecer em um tribunal londrino na quarta-feira depois de não ter levado a fiança necessária para garantir a libertação da custódia, disse um funcionário do tribunal.
Justiça adiada.
Os cinco anos que levou os reguladores a trazer cobranças de alto perfil contra um comerciante do Reino Unido ressaltam o quão difícil é detectar erros em mercados em rápido desenvolvimento e podem anunciar problemas na detecção de futuros acidentes.
Crise de liquidez energética?
Por enquanto, os mercados de energia estão presos em uma faixa relativamente apertada, que tendem a acalmar alguns para dormir e potencialmente truque os comerciantes para assumir riscos que talvez não sejam especialmente sábios para esses mercados.
Estratégias e Segredos das Empresas de Negociação de Alta Freqüência (HFT).
O sigilo, a Estratégia e a Velocidade são os termos que melhor definem as empresas de alta freqüência (HFT) e, de fato, a indústria financeira em geral, tal como existe hoje.
As empresas HFT são seguras sobre suas formas de operar e chaves para o sucesso. As pessoas importantes associadas à HFT evitam as luzes das pistas e preferem ser menos conhecidas, embora isso esteja mudando agora.
As empresas do negócio HFT operam através de múltiplas estratégias para negociar e ganhar dinheiro. As estratégias incluem diferentes formas de arbitragem - arbitragem de índice, arbitragem de volatilidade, arbitragem estatística e arbitragem de fusão, juntamente com macro global, equidade longa / curta, mercado de mercado passivo, e assim por diante.
A HFT confia na velocidade ultra rápida do software de computador, acesso a dados (NASDAQ TotalView-ITCH, NYSE OpenBook, etc.) a recursos importantes e conectividade com latência mínima (atraso).
Vamos explorar mais sobre os tipos de empresas HFT, suas estratégias para ganhar dinheiro, grandes players e muito mais.
As empresas HFT geralmente usam dinheiro privado, tecnologia privada e uma série de estratégias privadas para gerar lucros. As empresas comerciais de alta freqüência podem ser divididas em três tipos.
A forma mais comum e maior da empresa HFT é a empresa proprietária independente. A negociação exclusiva (ou "prop trading") é executada com o próprio dinheiro da empresa e não com os clientes. Por outro lado, os lucros são para a empresa e não para clientes externos. Algumas empresas da HTF são parte subsidiária de uma empresa de corretores. Muitas das empresas regulares de corretoras têm uma seção secundária conhecida como mesas de negociação proprietárias, onde o HFT está pronto. Esta seção está separada do negócio que a empresa faz para seus clientes externos regulares. Por último, as empresas HFT também operam como hedge funds. Seu foco principal é lucrar com as ineficiências nos preços entre títulos e outras categorias de ativos usando arbitragem.
Antes da regra de Volcker, muitos bancos de investimento tinham segmentos dedicados à HFT. Post-Volcker, nenhum banco comercial pode possuir mesas de negociação proprietárias ou quaisquer investimentos de hedge funds desse tipo. Embora todos os principais bancos tenham encerrado suas lojas de HFT, alguns desses bancos ainda estão enfrentando alegações sobre possíveis malversações relacionadas ao HFTs realizadas no passado.
Existem muitas estratégias empregadas pelos comerciantes de propriedade para ganhar dinheiro com suas empresas; alguns são bastante comuns, alguns são mais controversos.
Essas empresas negociam de ambos os lados, ou seja, eles fazem pedidos para comprar e vender usando pedidos de limite que estão acima do mercado atual (no caso de venda) e ligeiramente abaixo do preço de mercado atual (no caso de compra). A diferença entre os dois é o lucro que eles bolsam. Assim, essas empresas se dedicam à "criação de mercado" apenas para obter lucros com a diferença entre o spread de oferta e solicitação. Essas transações são realizadas por computadores de alta velocidade usando algoritmos. Outra fonte de renda para as empresas HFT é que eles são pagos por fornecer liquidez pelas Redes de Comunicações Eletrônicas (ECNs) e algumas trocas. As empresas HFT desempenham o papel de criadores de mercado, criando spreads de oferta e solicitação, produzindo principalmente preços baixos, estoques de alto volume (favoritos típicos para HFT) muitas vezes em um único dia. Essas empresas cercam o risco ao esquentar o comércio e criar um novo. (Veja: Seleção de Principais estoques de comerciantes de alta freqüência (HFTs)) Outra maneira dessas empresas ganhar dinheiro é procurando discrepâncias de preços entre títulos em diferentes bolsas ou aulas de ativos. Esta estratégia é chamada de arbitragem estatística, em que um comerciante proprietário está atento às inconsistências temporárias nos preços em diferentes trocas. Com a ajuda de transações ultra rápidas, eles capitalizam essas pequenas flutuações que muitos nem sequer percebem. As empresas HFT também ganham dinheiro ao se entregarem a uma ignição momentânea. A empresa pode ter como objetivo causar um pico no preço de um estoque, usando uma série de negócios com o motivo de atrair outros comerciantes de algoritmos para negociar esse estoque. O instigador de todo o processo sabe que após o movimento de preços rápidos "artificialmente criado", o preço reverte para o normal e, portanto, o comerciante ganha tomando uma posição no início e, eventualmente, trocando antes de sair. (Leitura relacionada: como o investidor varejista beneficia da negociação de alta freqüência)
O mundo da HFT tem jogadores que vão desde pequenas empresas até empresas de médio porte e grandes jogadores. Alguns nomes da indústria (sem pedido específico) são o Automated Trading Desk (ATD), a Chopper Trading, a DRW Holdings LLC, a Tradebot Systems Inc., a KCG Holdings Inc. (fusão da GETCO e Knight Capital), Susquehanna International Group LLP ( SIG), Virtu Financial, Allston Trading LLC, Geneva Trading, Hudson River Trading (HRT), Jump Trading, Five Rings Capital LLC, Jane Street, etc.
As empresas envolvidas em HFT enfrentam frequentemente riscos relacionados à anomalia de software, condições dinâmicas do mercado, bem como regulamentos e conformidade. Uma das instâncias flagrantes foi um fiasco ocorrido em 1 de agosto de 2012, que trouxe o Knight Capital Group perto da falência - perdeu US $ 400 milhões em menos de uma hora depois que os mercados abriram esse dia. A "falha comercial", causada por um mau funcionamento do algoritmo, levou a comércio errático e ordens ruins em 150 estoques diferentes. A empresa foi finalmente resgatada. Essas empresas devem trabalhar no gerenciamento de riscos, uma vez que é esperado que assegurem muita conformidade regulatória, além de enfrentar os desafios operacionais e tecnológicos.
Fundamentos do comércio algorítmico: conceitos e exemplos.
Um algoritmo é um conjunto específico de instruções claramente definidas destinadas a realizar uma tarefa ou processo.
O comércio algorítmico (negociação automatizada, negociação em caixa preta ou simplesmente algo-trading) é o processo de uso de computadores programados para seguir um conjunto definido de instruções para colocar um comércio para gerar lucros a uma velocidade e freqüência impossíveis para um comerciante humano. Os conjuntos definidos de regras são baseados em tempo, preço, quantidade ou qualquer modelo matemático. Além das oportunidades de lucro para o comerciante, o algo-trading torna os mercados mais líquidos e torna a negociação mais sistemática descartando impactos emocionais humanos nas atividades comerciais. (Para mais, consulte Picking the Right Algorithmic Trading Software.)
Suponha que um comerciante siga esses critérios de comércio simples:
Compre 50 ações de uma ação quando sua média móvel de 50 dias excede a média móvel de 200 dias. Vende ações da ação quando sua média móvel de 50 dias está abaixo da média móvel de 200 dias.
Usando este conjunto de duas instruções simples, é fácil escrever um programa de computador que monitorará automaticamente o preço das ações (e os indicadores de média móvel) e colocará as ordens de compra e venda quando as condições definidas forem atendidas. O comerciante não precisa mais manter um relógio para preços e gráficos ao vivo, ou colocar as ordens manualmente. O sistema de negociação algorítmica automaticamente faz isso para ele, identificando corretamente a oportunidade comercial. (Para mais informações sobre as médias móveis, consulte Médias móveis simples, faça as tendências se destacarem.)
[Se você quiser saber mais sobre as estratégias comprovadas e pontuais que podem eventualmente ser trabalhadas em um sistema de comércio alorítico, confira o Curso de Torneio de Dia de Torneio da Invastopedia Academy. ]
Benefícios da negociação algorítmica.
A Algo-trading oferece os seguintes benefícios:
Negociações executadas com os melhores preços Posicionamento instantâneo e preciso da ordem comercial (com altas chances de execução nos níveis desejados) Negociações cronometradas corretamente e instantaneamente, para evitar mudanças de preços significativas Custos de transação reduzidos (veja o exemplo de falta de implementação abaixo) Verificações automatizadas simultâneas em múltiplos condições de mercado Reduziu o risco de erros manuais na colocação dos negócios Backtest o algoritmo, com base nos dados históricos e em tempo real disponíveis Reduzida a possibilidade de erros por comerciantes humanos com base em fatores emocionais e psicológicos.
A maior parte do dia-a-dia é a negociação de alta freqüência (HFT), que tenta capitalizar a colocação de um grande número de pedidos em velocidades muito rápidas em múltiplos mercados e múltiplos parâmetros de decisão, com base em instruções pré-programadas. (Para obter mais informações sobre o comércio de alta freqüência, consulte Estratégias e Segredos de Empresas de Negociação de Alta Freqüência (HFT).)
O Algo-trading é usado em muitas formas de atividades de comércio e investimento, incluindo:
Investidores de médio a longo prazo ou empresas de compra (fundos de pensão, fundos de investimento, companhias de seguros) que adquirem ações em grandes quantidades, mas não querem influenciar os preços das ações com investimentos discretos e de grande porte. Os comerciantes de curto prazo e os participantes do lado da venda (fabricantes de mercado, especuladores e arbitragentes) se beneficiam da execução comercial automatizada; Além disso, ajudas de algo-trading na criação de liquidez suficiente para os vendedores no mercado. Os comerciantes sistemáticos (seguidores de tendências, comerciantes de pares, hedge funds, etc.) acham muito mais eficiente programar suas regras comerciais e permitir que o programa seja comercializado automaticamente.
O comércio algorítmico proporciona uma abordagem mais sistemática ao comércio ativo do que os métodos baseados na intuição ou instinto do comerciante humano.
Estratégias de negociação algorítmica.
Qualquer estratégia de negociação algorítmica exige uma oportunidade identificada que seja rentável em termos de melhoria de ganhos ou redução de custos. As seguintes são estratégias de negociação comuns usadas em algo-trading:
As estratégias de negociação algorítmicas mais comuns seguem as tendências em médias móveis, fuga de canais, movimentos no nível de preços e indicadores técnicos relacionados. Estas são as estratégias mais fáceis e simples de implementar através de negociação algorítmica porque essas estratégias não envolvem fazer previsões ou previsões de preços. Os negócios são iniciados com base na ocorrência de tendências desejáveis, que são fáceis e direitas de implementar através de algoritmos sem entrar na complexidade da análise preditiva. O exemplo acima mencionado de média móvel de 50 e 200 dias é uma tendência popular seguindo a estratégia. (Para mais informações sobre as estratégias de negociação de tendências, consulte: Estratégias simples para capitalizar as tendências.)
Comprar um estoque cotado duplo a um preço mais baixo em um mercado e simultaneamente vendê-lo a um preço mais alto em outro mercado oferece o diferencial de preço como lucro ou arbitragem sem risco. A mesma operação pode ser replicada para ações versus instrumentos de futuros, pois os diferenciais de preços existem de tempos em tempos. Implementar um algoritmo para identificar esses diferenciais de preços e colocar as ordens permite oportunidades lucrativas de forma eficiente.
Os fundos do índice definiram períodos de reequilíbrio para que suas participações fossem compatíveis com seus respectivos índices de referência. Isso cria oportunidades rentáveis para comerciantes algorítmicos, que capitalizam os negócios esperados que oferecem lucros de 20 a 80 pontos base, dependendo do número de ações no fundo do índice, apenas antes do reequilíbrio do fundo do índice. Essas negociações são iniciadas através de sistemas de negociação algorítmica para execução atempada e melhores preços.
Muitos modelos matemáticos comprovados, como a estratégia de negociação neutra do delta, que permitem a negociação de combinações de opções e sua segurança subjacente, onde os negócios são colocados para compensar deltas positivos e negativos, de modo que o portfólio delta seja mantido em zero.
A estratégia de reversão média baseia-se na ideia de que os preços altos e baixos de um bem são um fenômeno temporário que retorna periodicamente ao seu valor médio. Identificar e definir uma faixa de preço e implementar algoritmos com base em isso permite que os negócios sejam colocados automaticamente quando o preço do recurso entra e sai do seu alcance definido.
A estratégia de preços médios ponderados por volume quebra uma grande ordem e libera pedaços menores determinados dinamicamente da ordem para o mercado usando perfis de volume histórico específicos de estoque. O objetivo é executar a ordem perto do preço médio ponderado do volume (VWAP), beneficiando assim o preço médio.
A estratégia de preço médio ponderado no tempo quebra uma grande ordem e libera dinamicamente determinados pedaços menores da ordem para o mercado usando intervalos de tempo uniformemente divididos entre o início e o fim do tempo. O objetivo é executar a ordem perto do preço médio entre os horários de início e término, minimizando assim o impacto no mercado.
Até que a ordem comercial seja totalmente preenchida, este algoritmo continua enviando ordens parciais, de acordo com o índice de participação definido e de acordo com o volume negociado nos mercados. A "estratégia de etapas" relacionada envia ordens a uma porcentagem definida pelo usuário de volumes de mercado e aumenta ou diminui essa taxa de participação quando o preço da ação atinge os níveis definidos pelo usuário.
A estratégia de falta de implementação visa minimizar o custo de execução de uma ordem através da negociação do mercado em tempo real, economizando assim o custo da ordem e beneficiando do custo de oportunidade da execução atrasada. A estratégia aumentará a taxa de participação direcionada quando o preço das ações se mover de forma favorável e diminuí-lo quando o preço das ações se mover de forma adversa.
Existem algumas classes especiais de algoritmos que tentam identificar "acontecimentos" do outro lado. Esses "algoritmos de sniffing", usados, por exemplo, por um market maker market market têm a inteligência interna para identificar a existência de qualquer algoritmo no lado da compra de uma grande ordem. Essa detecção através de algoritmos ajudará o fabricante de mercado a identificar grandes oportunidades de ordem e permitir que ele se beneficie ao preencher os pedidos a um preço mais alto. Isso às vezes é identificado como front-running de alta tecnologia. (Para obter mais informações sobre negociação de alta freqüência e práticas fraudulentas, consulte: Se você comprar ações on-line, você está envolvido em HFTs.)
Requisitos técnicos para negociação algorítmica.
Implementar o algoritmo usando um programa de computador é a última parte, batida com backtesting. O desafio é transformar a estratégia identificada em um processo informatizado integrado que tenha acesso a uma conta de negociação para fazer pedidos. São necessários os seguintes:
Conhecimento de programação de computador para programar a estratégia de negociação necessária, programadores contratados ou software de negociação pré-fabricado Conectividade de rede e acesso a plataformas de negociação para colocar os pedidos Acesso a feeds de dados de mercado que serão monitorados pelo algoritmo para oportunidades de colocar pedidos A capacidade e infra-estrutura para voltar a testar o sistema uma vez construído, antes de entrar em operação em mercados reais Dados históricos disponíveis para backtesting, dependendo da complexidade das regras implementadas no algoritmo.
Aqui está um exemplo abrangente: o Royal Dutch Shell (RDS) está listado na Amsterdam Stock Exchange (AEX) e London Stock Exchange (LSE). Vamos construir um algoritmo para identificar oportunidades de arbitragem. Aqui estão algumas observações interessantes:
AEX negocia em Euros, enquanto a LSE negocia em libras esterlinas. Devido à diferença horária de uma hora, a AEX abre uma hora antes da LSE, seguido de ambas as trocas comerciais simultaneamente durante as próximas horas e depois de negociar apenas na LSE durante a última hora à medida que o AEX fecha .
Podemos explorar a possibilidade de negociação de arbitragem nas ações da Royal Dutch Shell listadas nesses dois mercados em duas moedas diferentes?
Um programa de computador que pode ler os preços atuais do mercado Os feeds de preços de LSE e AEX A taxa de câmbio para a taxa de câmbio GBP-EUR Capacidade de colocação de pedidos que podem rotear a ordem para a troca correta do recurso Back-testing em feeds históricos de preços.
O programa de computador deve executar o seguinte:
Leia o preço de entrada do estoque RDS de ambas as bolsas Usando as taxas de câmbio disponíveis, converta o preço de uma moeda para outra. Se houver uma discrepância de preço suficientemente grande (descontando os custos de corretagem) levando a uma oportunidade rentável, então coloque a compra ordem em troca de preços mais baixos e ordem de venda em troca de preços mais elevados Se as ordens forem executadas conforme desejado, o lucro de arbitragem seguirá.
Simples e fácil! No entanto, a prática de negociação algorítmica não é simples de manter e executar. Lembre-se, se você pode colocar um comércio gerado por algo, os outros participantes do mercado podem também. Conseqüentemente, os preços flutuam em milissegundos e até mesmo em microssegundos. No exemplo acima, o que acontece se o seu comércio de compras for executado, mas o comércio de vendas não acontece à medida que os preços de venda mudam quando o seu pedido atinge o mercado? Você vai acabar sentado com uma posição aberta, tornando sua estratégia de arbitragem inútil.
Existem riscos e desafios adicionais: por exemplo, riscos de falha do sistema, erros de conectividade de rede, atrasos de tempo entre ordens comerciais e execução e, o mais importante de tudo, algoritmos imperfeitos. O algoritmo mais complexo é o backtesting mais rigoroso antes de ser posto em ação.
The Bottom Line.
A análise quantitativa do desempenho de um algoritmo desempenha um papel importante e deve ser examinada criticamente. É excitante ir pela automação auxiliada por computadores com a noção de ganhar dinheiro sem esforço. Mas é preciso certificar-se de que o sistema está completamente testado e os limites exigidos são definidos. Os comerciantes analíticos devem considerar a aprendizagem de sistemas de programação e construção por conta própria, ter confiança em implementar as estratégias certas de forma infalível. O uso cauteloso eo teste completo de algo-trading podem criar oportunidades rentáveis. (Para mais informações, consulte Como codificar seu próprio robô Algo Trading.)
Estratégias de negociação de alta freqüência.
A maioria dos investidores provavelmente nunca viu a P & amp; L de uma estratégia de negociação de alta freqüência. Há uma razão para isso, é claro: dado as características de desempenho típicas de uma estratégia de HFT, uma empresa de comércio tem pouca necessidade de capital externo. Além disso, as estratégias de HFT podem ser limitadas de capacidade, uma grande consideração para os investidores institucionais. Por isso, é divertido ver a reação de um investidor ao encontrar o histórico de uma estratégia HFT pela primeira vez. Acostumados quanto a ver os índices de Sharpe no intervalo de 0,5-1,5, ou talvez até 1,8, se tiverem sorte, os retornos assustadores ajustados ao risco de uma estratégia de HFT, que muitas vezes têm razões de Sharpe de dois dígitos, são verdadeiramente Incompreensível.
A título de ilustração, anexei abaixo o registro de desempenho de uma dessas estratégias HFT, que negocia cerca de 100 vezes ao dia no contrato eMini S & amp; P 500 (incluindo a sessão noturna). Observe que a borda não é ótima. com média de 55% de negócios rentáveis e lucro por contrato de cerca de metade do tiquete # 8211; Estas são algumas das características definidoras das estratégias de negociação HFT. Mas, devido ao grande número de negócios, resulta em lucros muito substanciais. A esta frequência, as comissões de negociação são muito baixas, geralmente abaixo de US $ 0,1 por contrato, em comparação com US $ 1 e 8211; $ 2 por contrato para um comerciante de varejo (na verdade, uma empresa de HFT tipicamente possui ou arrenda assentos de câmbio para minimizar tais custos).
Ocultos a partir da análise acima são os custos indiretos associados à implementação dessa estratégia: o feed de dados do mercado, a plataforma de execução e a conectividade capazes de lidar com enormes volumes de mensagens, bem como a lógica de algo para monitorar os sinais da microestrutura e gerenciar a prioridade do livro de pedidos. . Sem isso, a estratégia seria impossível de implementar de forma rentável.
Escalando as coisas de volta um pouco, vamos dar uma olhada em uma estratégia de troca de dias que negocia apenas cerca de 10 vezes ao dia, em barras de 15 minutos. Embora não ultra-alta freqüência, a estratégia, no entanto, é de alta freqüência para ser sensível à latência. Em outras palavras, você não gostaria de tentar implementar essa estratégia sem uma alimentação de dados de mercado de alta qualidade e plataforma de negociação de baixa latência capaz de executar no nível de 1 milésimo de segundo. Pode ser possível implementar uma estratégia desse tipo usando a plataforma ADL da TT & # 8217; s, por exemplo.
Enquanto a taxa de vitórias e o fator de lucro são semelhantes à primeira estratégia, a menor freqüência de comércio permite um maior PL de comércio de pouco mais de 1 tiquetaque, enquanto a curva de equidade é muito menos lisa, refletindo uma relação Sharpe que é & # 8220; apenas & # 8221; em torno de 2.7.
O pressuposto crítico em qualquer estratégia HFT é a taxa de preenchimento. As estratégias HFT executam usando ordens limitadas ou IOC e somente uma certa porcentagem delas será preenchida. Supondo que há alfa no sinal, a P & amp; L cresce em proporção direta ao número de negócios, o que, por sua vez, depende da taxa de preenchimento. Uma taxa de preenchimento de 10% a 20% geralmente é suficiente para garantir a rentabilidade (dependendo da qualidade do sinal). Uma baixa taxa de preenchimento, como seria tipicamente observada se uma tentasse trocar em uma plataforma de comércio varejista, destruiria a rentabilidade de qualquer estratégia HFT.
Para ilustrar este ponto, podemos dar uma olhada no resultado se a estratégia acima foi implementada em uma plataforma de negociação que resultou em pedidos sendo preenchidos somente quando o mercado se processa através do preço limite. Não é uma visão bonita.
A moral da história é: desenvolver um algoritmo de negociação HFT que contém um sinal alfa viável é apenas metade da imagem. A infra-estrutura comercial utilizada para implementar essa estratégia não é menos crítica. É por isso que as empresas HFT gastam dezenas, ou centenas de milhões de dólares, desenvolvendo a melhor infra-estrutura possível.
No comments:
Post a Comment